首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12416篇
  免费   1449篇
  国内免费   441篇
化学   5078篇
晶体学   29篇
力学   1479篇
综合类   33篇
数学   5677篇
物理学   2010篇
  2023年   168篇
  2022年   96篇
  2021年   233篇
  2020年   438篇
  2019年   334篇
  2018年   304篇
  2017年   286篇
  2016年   492篇
  2015年   492篇
  2014年   630篇
  2013年   1070篇
  2012年   710篇
  2011年   738篇
  2010年   512篇
  2009年   793篇
  2008年   727篇
  2007年   757篇
  2006年   660篇
  2005年   507篇
  2004年   486篇
  2003年   454篇
  2002年   396篇
  2001年   378篇
  2000年   352篇
  1999年   299篇
  1998年   312篇
  1997年   240篇
  1996年   205篇
  1995年   163篇
  1994年   124篇
  1993年   118篇
  1992年   81篇
  1991年   76篇
  1990年   64篇
  1989年   53篇
  1988年   57篇
  1987年   42篇
  1986年   52篇
  1985年   40篇
  1984年   53篇
  1983年   20篇
  1982年   30篇
  1981年   30篇
  1980年   22篇
  1979年   25篇
  1978年   41篇
  1977年   41篇
  1976年   40篇
  1975年   15篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Deployed US Navy aircraft carriers must stock a large number of spare parts to support the various types of aircraft embarked on the ship. The sparing policy determines the spares that will be stocked on the ship to keep the embarked aircraft ready to fly. Given a fleet of ten or more aircraft carriers and a cost of approximately 50 million dollars per carrier plus the cost of spares maintained in warehouses in the United States, the sparing problem constitutes a significant portion of the Navy’s resources. The objective of this work is to find a minimum-cost sparing policy that meets the readiness requirements of the embarked aircraft. This is a very large, nonlinear, integer optimization problem. The cost function is piecewise linear and convex while the constraint mapping is highly nonlinear. The distinguishing characteristics of this problem from an optimization viewpoint are that a large number of decision variables are required to be integer and that the nonlinear constraint functions are essentially “black box” functions; that is, they are very difficult (and expensive) to evaluate and their derivatives are not available. Moreover, they are not convex. Integer programming problems with a large number of variables are difficult to solve in general and most successful approaches to solving nonlinear integer problems have involved linear approximation and relaxation techniques that, because of the complexity of the constraint functions, are inappropriate for attacking this problem. We instead employ a pattern search method to each iteration of an interior point-type algorithm to solve the relaxed version of the problem. From the solution found by the pattern search on each interior point iteration, we begin another pattern search on the integer lattice to find a good integer solution. The best integer solution found across all interations is returned as the optimal solution. The pattern searches are distributed across a local area network of non-dedicated, heterogeneous computers in an office environment, thus, drastically reducing the time required to find the solution.  相似文献   
112.
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004  相似文献   
113.
In this paper, we review briefly some methods for minimizing a functionF(x), which proceed by follwoing the solution curve of a system of ordinary differential equations. Such methods have often been thought to be unacceptably expensive; but we show, by means of extensive numerical tests, using a variety of algorithms, that the ODE approach can in fact be implemented in such a way as to be more than competitive with currently available conventional techniques.This work was supported by a SERC research studentship for the first author. Both authors are indebted to Dr. J. J. McKeown and Dr. K. D. Patel of SCICON Ltd, the collaborating establishment, for their advice and encouragement.  相似文献   
114.
An initial-value method is given for second-order singularly perturbed boundary-value problems with a boundary layer at one endpoint. The idea is to replace the original two-point boundary value problem by two suitable initial-value problems. The method is very easy to use and to implement. Nontrivial text problems are used to show the feasibility of the given method, its versatility, and its performance in solving linear and nonlinear singularly perturbed problems.This work was supported in part by the Consiglio Nazionale delle Ricerche, Contract No. 86.02108.01, and in part by the Ministero della Pubblica Istruzione.  相似文献   
115.
In this paper, we discuss the classical ill-posed problem of numerical differentiation, assuming that the smoothness of the function to be differentiated is unknown. Using recent results on adaptive regularization of general ill-posed problems, we propose new rules for the choice of the stepsize in the finite-difference methods, and for the regularization parameter choice in numerical differentiation regularized by the iterated Tikhonov method. These methods are shown to be effective for the differentiation of noisy functions, and the order-optimal convergence results for them are proved.

  相似文献   

116.
Two matrix approximation problems are considered: approximation of a rectangular complex matrix by subunitary matrices with respect to unitarily invariant norms and a minimal rank approximation with respect to the spectral norm. A characterization of a subunitary approximant of a square matrix with respect to the Schatten norms, given by Maher, is extended to the case of rectangular matrices and arbitrary unitarily invariant norms. Iterative methods, based on the family of Gander methods and on Higham’s scaled method for polar decomposition of a matrix, are proposed for computing subunitary and minimal rank approximants. Properties of Gander methods are investigated in details. AMS subject classification (2000) 65F30, 15A18  相似文献   
117.
Two domain-adaptive finite difference methods are presented and applied to study the dynamic response of incompressible, inviscid, axisymmetric liquid membranes subject to imposed sinusoidal pressure oscillations. Both finite difference methods map the time-dependent physical domain whose downstream boundary is unknown onto a fixed computational domain. The location of the unknown time-dependent downstream boundary of the physical domain is determined from the continuity equation and results in an integrodifferential equation which is non-linearly coupled with the partial differential equations which govern the conservation of mass and linear momentum and the radius of the liquid membrane. One of the finite difference methods solves the non-conservative form of the governing equations by means of a block implicit iterative method. This method possesses the property that the Jacobian matrix of the convection fluxes has an eigenvalue of algebraic multiplicity equal to four and of geometric multiplicity equal to one. The second finite difference procedure also uses a block implicit iterative method, but the governing equations are written in conservation law form and contain an axial velocity which is the difference between the physical axial velocity and the grid speed. It is shown that these methods yield almost identical results and are more accurate than the non-adaptive techniques presented in Part I. It is also shown that the actual value of the pressure coefficient determined from linear analyses can be exceeded without affecting the stability and convergence of liquid membranes if the liquid membranes are subjected to sinusoidal pressure variations of sufficiently high frequencies.  相似文献   
118.
In this paper we outline a new particle-mesh method for rapidly rotating shallow water flows based on a set of regularized equations of motion. The time-stepping method uses an operator splitting of the equations into an Eulerian gravity wave part and a Lagrangian advection part. An essential ingredient is the advection of absolute vorticity by means of translated radial basis functions. We show that this implies exact conservation of enstrophy. The method is tested on two model problems based on the qualitative features of the solutions obtained (i.e., dispersion or smoothness of potential vorticity contours) as well as on the increase in mean divergence level.  相似文献   
119.
In contrast to stochastic differential equation models used for the calculation of the term structure of interest rates, we develop an approach based on linear dynamical systems under non-stochastic uncertainty with perturbations. The uncertainty is described in terms of known feasible sets of varying parameters. Observations are used in order to estimate these parameters by minimizing the maximum of the absolute value of measurement errors, which leads to a linear or nonlinear semi-infinite programming problem. A regularized logarithmic barrier method for solving (ill-posed) convex semi-infinite programming problems is suggested. In this method a multi-step proximal regularization is coupled with an adaptive discretization strategy in the framework of an interior point approach. A special deleting rule permits one to use only a part of the constraints of the discretized problems. Convergence of the method and its stability with respect to data perturbations in the cone of convexC 1-functions are studied. On the basis of the solutions of the semi-infinite programming problems a technical trading system for future contracts of the German DAX is suggested and developed. Supported by the Stiftung Rheinland/Pfalz für Innovation, No. 8312-386261/307.  相似文献   
120.
The light of the sun can be used directly for changing chemical structures photochemically. Any industrial application must conform to the limitations imposed by the spectral distribution of the photons from the sun, the interruptions to the radiation due to the day/night rhythm, and the weather. In this review, we describe the photochemical potential of the sun, give a fundamental treatment of the concept of photoreactors driven by sunlight (abbreviated to solar photoreactors), and give an account of the realization of this concept in the first pilot plant on the “Plataforma Solar de Almeria” in southern Spain and in other activities in this field. Based on experimental data from photochemical investigations on the pilot plant scale, possibilities, limitations, and the potential growth of solar photochemistry are described. Solar photochemistry, in our opinion, is a technique which could make a contribution to the chemistry of the future because of its photochemical synthesis potential, the avoidance of waste products, and the direct utilization of the sun, not only as a primary energy source, but also as a reaction partner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号